
Enterprise Transformation using

a Lean and Agile Toolbox

Stefan Bente1, Uwe Bombosch
2
, Shailendra Langade

3

1 Cassini Consulting GmbH, Halskestr. 46, 40880 Ratingen, Germany

stefan.bente@cassini.de
2 Platinion GmbH, Im Mediapark 4a, 50670 Köln, Germany

uwe.bombosch@platinion.de
3 Tata Consultancy Services, Gateway Park, Road No. 13, Mumbai 4000093, India

shailendra.langade@tcs.com

Abstract. Despite large investments, a high percentage of IT transformations

fail to live up to expectations. Amongst the reasons are lack of stakeholder buy-

in, bureaucratic processes, and an ivory tower mindset. No wonder that some

blame IT in general as heavy-weight, time-consuming, and inefficient.

A pragmatic antidote is to introduce lean and agile concepts. They have proven

their ability to streamline complex processes in manufacturing and software

development. A lean and agile toolbox for enterprise transformation uses an

iterative approach, broad participation across hierarchy levels, and stripped-

down processes.

Such an agile approach can be used for strategic IT planning, including the C-

level decision makers. Transformation work is clocked by specific iterations,

which are compatible with the TOGAF phases. The architecture models for

complex IT transformations are created and controlled in custom-tailored

“scrum of scrums” teams that makes sure all stakeholders are involved. An

innovative interpretation of the TOGAF framework allows to use a lean Kanban

approach in the EA work itself.

Keywords: Enterprise transformation, enterprise architecture, IT

transformation, lean, agile, Kanban, scrum, scrum of scrums, toolbox

Enterprise Architecture – Where it works, and where it fails

Information Technology (IT) is pretty young as compared to many other industry

sectors. It has been used in the mainstream business only for fifty odd years. Over the

last few decades, it has made a startling impact on the way enterprises do business. As

enterprises started relying more and more on IT to support their day-to-day business

operation and to enable their long-term business strategy, the role and contribution of

IT in the enterprise gained more and more importance.

With a continuous addition of new applications, prolonged retention of legacy

platforms, and a growing number of system interactions, the enterprise IT landscape

has gradually reached a remarkable level of complexity. Apart from incurring heavy

costs, this complexity impedes business changes, and therefore causes frustration

mailto:stefan.bente@cassini.de
mailto:uwe.bombosch@platinion.de
mailto:shailendra.langade@tcs.com

among the business people. For business, IT is an asset and a liability at the same

time.

Enterprises want their IT to be stable, agile, adaptable and efficient. Unfortunately,

these noble goals are a far cry from reality today. IT invariably remains brittle,

sluggish, inflexible, and expensive. This IT nuisance, in most of the enterprises, is a

compounding effect of the complexities originating from many sources:

 Complex business operations

 Technology changes

 Immaturity in software engineering

 An uncontrolled proliferation in the IT landscape (sometimes dressed as lack

of organizational ownership in IT)

The task of Enterprise Architecture (EA) is that of a hygiene factor for the complex

IT landscape. An enterprise architect must safeguard IT as a corporate asset. Every

opportunity to eliminate needless complexity and costs in the IT landscape must be

spotted and leveraged. In addition, the enterprise architect must make sure that every

new addition or change to IT is justified by an agreed business purpose, and has a

committed business value.

The grey reality

As much as the need for IT transformations in today’s enterprise world is

acknowledged, their execution often fails to meet the expectations set into them. In

our jobs as architects and consultants, we have seen quite many enterprises from

inside over the past years. We have seen a large firm, where the absence of an

effective EA yielded shortcomings across all organizational units in touch with IT:

 Business managers who had no clear conception of how their business unit is

utilizing IT

 Technical application owners who did not know which systems their

application was interfacing with

 Developers who felt uncertain about which framework to use (and

consequentially downloaded whatever they felt suitable from the internet)

 Operational staff who desperately experimented with re-starting a bunch of

information systems in production, because they had no idea about their

interdependencies

On the other hand, we encountered companies that, despite having a fully

institutionalized EA in place, were in a state close to paralysis. The conglomerate of

business, organizational, and technical dependencies had grown to a muddle that made

reasonable changes impossible. As a consequence, they were still able to operate their

existing IT assets for daily work – but unable to move in any future direction. They

had usually gone through several not-so-successful application rationalization

attempts over the years.

In one such case, the only possible way to find out whether an application was not

in use anymore, and could therefore be actually ramped down, was to literally place a

red phone beneath the hosting server and then shut down the server. If no angry calls

would come through for a period of one month, the conclusion that no one needed the

application anymore was considered safe. Everyone can draw his own conclusions on

such an approach.

IT transformations being cancelled, a wrong portfolio of initiatives taken up, totally

overambitious harmonization programs, anarchy due to ineffective governance – the

list of possible IT blunders could easily be prolonged further. The reasons for such

problems are usually manifold, of course, and cannot be pinned down to

malfunctioning enterprise architecture alone. However, as we have seen in the

previous section, EA is supposed to prevent such failures – so why do they keep

happening?

Although EA has reached the mainstream, a skeptic undertone with regard to its

effectiveness has always been there. In 2004, after completing many years of EA

effort, the General Accounting Office (GAO)
1
 reported a standstill in EA maturity

within the US government agencies: “Of the 93 agencies that we reported on in 2001

and 2003, 22 agencies (…) increased their maturity, 24 (…) decreased their maturity,

and 47 (…) remained the same.” [9].

Adopting a harsh critic’s perspective, one could claim today that:

 EA does not scale to create any visible impact in a large enterprise setup

 It is not equipped with the right approach and toolset to cover the entire scope

of work, from strategy through implementation

 It fails to keep pace with the speed of change in modern business

Yet, according to literature and own experience, spectacular failures happen only in

a minority of EA programs. As a general rule, case studies documenting the effect of

an EA program – be it success or failure – seem to be rare. Especially we have not

found any documented cases where EA programs have actually been cancelled, and

the EA organization been disbanded. More often, EA seems to slip into a grey

mediocrity: Fulfilling some promises, but failing others. An EA organization working

in this mode is too lively still to be abandoned, but does not have enough strength to

effectively set the course for the whole IT organization.

The lean and agile toolbox for enterprise transformation

EA is far from having the sustainable and sweeping effect that it promises. But how

can we do better, and avoid these extremes?

The key success factor is to what extent a collaboration on EA between all

stakeholders comes alive. The often recited mantra that the executive board’s

commitment to an EA initiative is the deciding momentum falls short of the mark. If

1 The GAO is a part of the legislative branch of the US government. It also functions as the

audit, evaluation, and investigative arm of the US Congress.

an EA initiative is running into a dead end, it is mostly the breach between strategic

vision and ground level reality that makes it go astray.

The commitment of the CEO is a necessary, but not a sufficient condition for

closing this breach. It fails to be a substitute for a living, self-dependent collaboration.

With commanded EA, people must collaborate, because the chief is saying so. But as

soon as high-level management attention goes away, EA again becomes stale, unless it

is valued and supported by the ground level personnel being involved into designing,

developing, operating, or simply using IT. Hence, collaboration is the leitmotif for a

better way to practice EA.

But how can we elicit collaboration, and apply it as an antidote against a stale EA?

A natural approach for unloading some ballast from EA can be found in the principles

of lean and agile software development. Cornerstones of these methodologies are

reduced process overhead, people empowerment, and a strong focus on deliverables.

Lean and agile methods can help making EA more down-to-earth, efficient, light-

weight, and flexible, without neglecting the traditional qualities, processes, and tasks

of EA work. The essence of lean and agile toolbox for enterprise transformation can

be expressed in two central maxims:

 Establish a lean set of processes and rules, instead of overloading the

stakeholders with bureaucratic processes and unsolicited artifacts

 Adopt evolutionary problem solving, instead of blueprinting the whole future

rigidly on a drawing board

To avoid one misunderstanding right from the start: We do not assume that all IT

development projects are executed according to the lean or agile methodology. Our

approach to enterprise architecture works with waterfall projects, just as well as with

agile or lean projects. The proposal we are making here is to apply lean and agile

principles to the EA processes themselves, irrespective of the methodology used in the

downstream software development projects.

Practicing lean and agile methods means to welcome change, planning and

executing incrementally, and focusing on structured human interaction instead of

channeled reporting lines. These methods are an enabler for a reduced and efficient

organization to deal with complexity – exactly what EA needs. By applying these

methods to the creation of architecture, instead the creation of software, we follow the

above two guidelines, when dealing with EA activities on a day to day basis.

The focus on continuous delivery avoids an EA that is just dreaming of the future,

instead of realizing short- and mid-term benefits. Synchronization points (iterations,

demos, frequent planning and feedback workshops) ensure that EA is aware of the

demands of the stakeholders, and can easily adapt to changes in their requirements.

The lean methodology, on the other hand, teaches us how to establish lightweight

processes. Work-items are pulled by demand, instead of pushed under (often false)

assumptions.

No. Tool Goal

#1 Get rid of waste by

streamlining

architecture processes

Values the sparse time of enterprise IT

stakeholders by focusing on lean processes with

as little management overhead as possible

#2 Involve all stakeholders

by interlocking

architecture scrums

Makes sure that all stakeholders are involved by

focusing on structured human interaction as a

main channel of information flow

#3 Practice iterative

architecture through EA

Kanban

Welcomes change, and favor iterative design over

large-scale upfront planning, and supports this

approach by tools and methods

Table 1. Lean and agile tool #1 through #3

The practical implementation of these concepts has been condensed into three

concrete tools, as outlined in Table 1. We will discuss them in more detail in the

following sections.

Tool #1: Get rid of waste by streamlining architecture processes

Lean management has its origin in the Toyota Production System (TPS). End of the

1940s, the company faced the challenge to produce inexpensive cars for a striving

post-war society. The TPS, introduced by Taiichi Ohno [5], focused on optimizing the

production efficiency by consistently eliminating “waste”, unnecessary or even

harmful steps in the design and production processes. At the same time, aspects of

human motivation gained a high degree of importance, adding “respect for humanity”

as an explicit value.

In the late 1980s, under the impression of the Japanese economic miracle of the

past twenty years, Japan was hyped as a role model for industrial efficiency in the

Western world. Against this backdrop, lean became a popular buzzword in

management theory. The term was coined by John Krafcik [2], and made popular by

the books of James P. Womack [10] and others. They transferred the lean

management principles to general business organizations. Mary and Tom Poppendieck

[6,7] eventually established lean thinking as a software development method by

condensing the lean thinking into seven principles, adapted to the software creation

process.

Waste removal from EA processes

Tool #1, Get rid of waste by streamlining architecture processes, takes up an

essential element of lean development, the elimination of “waste”. The essence of this

tool is to analyze the EA processes for unnecessary bureaucracy, over-processing, and

delays, and streamlining them by removing such wasteful activities.

Production waste is not only a phenomenon in manufacturing, but also occurs in

the non-physical world of software development, IT processes, and the creation of

enterprise architecture models. Waste in EA processes can be classified under the

following categories
2
:

1 Partially Done Work: Information is not available, and architectural artifacts

are not completed, but stockpiled in a semi-finished state

2 Over-Architecting: The wrong architectural issues are tackled, or the right

ones are covered with too much detail

3 Redundant Processes: Essentially the right things are done, but with too

much effort; inadequate, unnecessary or duplicate processes rendering the

overall process inefficient

4 Handoffs: Friction occurs in the interaction of different actors in the EA

processes, due to task handovers or communication problems

5 Task Switching: Enterprise architects and other participants in the EA process

lose time and energy to switch between many concurrent tasks

6 Delays: People wait for information, feedback, or approvals

7 Defects: EA strategy, models, and documents contain flaws, or participants in

the EA processes display erratic behavior

A detailed analysis of each EA waste type would exceed the scope of this paper. A

comprehensive list for each type can be found in [1]. As an example, we list possible

types of waste created by Over-Architecting:

 IT strategy derived from industry hype (SOA, WOA, Cloud, …), rather than

business maxims

 Vendor-driven, technology-focused, or product-centric IT strategy with no

correlation to what the business is asking for

 Overly complex solutions for simple problems (like “Do everything with

SAP”)

 Modeling too detailed (e.g. for a mere strategy option, where a superficial

model would suffice)

 Architecture view too formalized for an audience of non-architects

 IT transformations not justified by business needs or by IT strategy

 Up-front investments into technologies and platforms in anticipation of future

needs

 Planning horizon reaching too far into the future

 Transition to EA standards, policies, principles, and guidelines that later turn

out to be irrelevant, abandoned, replaced, rejected, or ignored

 Over-specification of corporate standards and guidelines

 Too much involvement of enterprise architects in the nitty-gritty details of IT

projects

 Key architecture concepts (like adaptation, mediation, transformation) only

introduced on project level because EA compliance requires it, not because

they are suitable for the project

2 The EA waste interpretation as outlined in this section is mainly derived from [4, 6, 7, and 10],

These authors describe waste in lean manufacturing and product design. We have adapted

their terminology and ideas to EA processes.

 Mitigating IT risks that that are improbable, too far in the future, or have

already materialized

 Architecture as an overreaction to never-to-happen-again problems of the

past

Analysis tools for EA waste detection

Even if we know what kind of waste EA processes can potentially contain, it is still

required to analysis the EA processes of a concrete enterprise in order to spot

opportunities for waste removal. In the lean methodology, such analysis is usually

carried out by using a set of tools summed up as value stream mapping
3
. One of them,

the Process Activity Map, we will take a closer look at in this paper.

The removal of waste is, in lean methodology, inseparably linked to the analysis

where value is generated. In other words, the EA value stream needs to be analyzed.

Trivial as it may sound, the first step in value stream analysis is always a clear

definition of the term value. Any process step either adds value, or it does not. In mass

production, a step is value-adding if it directly contributes to manufacturing of a work

piece.

Painting a car body is value adding; storing it to dry is not. The latter might be an

example for a step that does not have a value in itself, but is required by the process.

Therefore, lean experts usually use the three-fold classification scheme below
4
. The

goal of value stream optimization is to eliminate the NVA and minimize the R-NVA

process steps.

 Value-adding (VA): Directly contributing the outcome of the process

 Required but non-value-adding (R-NVA): No direct value contribution, but

required due to the technical nature of the production process, for instance

coordination meetings

 Non-value-adding (NVA): Process steps that are not required by the process,

and do not add value

The Process Activity Map is the central tool in value stream mapping. It depicts the

flow of an EA document or model, through different kinds of processing steps. The

notation is listed in Figure 1. Broad arrows symbolize major flow of information or

intermediate work products, while the fine arrow stands for contributing information

like review feedback. The process nodes can be:

 Start- or endpoints

 Operations (like Generalize Requirements)

 Other activities like review, approval, and handover between different actors
5

3 A comprehensive description of value stream mapping tools can for instance be found in [4].
4 We use the definitions by [4]. Sometimes R-NVA is also abbreviated as NNVA (necessary but

non-value-adding).
5 The Approval and the Handover node are not part of the notation as described by McManus

and other authors, but have been added specifically for EA processes.

 Temporary inventories where intermediate products wait for further

processing

Figure 1. Process Activity Map notation for EA processes

Let’s use an example to demonstrate the usage of value stream mapping in EA

processes. Figure 2 shows a piloting project6 to develop EA guidelines for developing

Mobile applications. It was started in the context strategy given out by the CIO to

bring the enterprise closer to its customers. One IT maxim in this strategy was Full

Multi-Channel Capability, but at first the company did not have any standards in place

at all that covered mobile technology.

Therefore, the EA team proposed a thorough technology and platform evaluation,

targeting at the creation of compulsory standards and development guidelines. Not

much mobile know-how was available in the IT organization. For that reason, the

allocated budget for the project included an unprecedented luxury – the creation of

small prototype, by an offshore team of the preferred implementation partner,

managed by the IT organization.

Much to everybody’s dismay, the project turned out to be a failure. It took a full

year instead of the planned six months, overrunning schedule and budget by 100%.

And yet, no one was really happy with the result. The IT crowd claimed that the

6 The example itself is hypthetical, but is based on real experience by the authors.

guidelines were impractical and overly rigid, while the business was disappointed with

the prototype’s capabilities. Worst of all, due to the delay, several development

projects could not wait for the guidelines to be finalized (or claimed they couldn’t),

and started with the implementation of their mobile applications – each using a

different technology, of course.

Figure 2. Process Activity Map for an EA project developing Mobile Apps development

guidelines (times given in working days)

From the description above, it has become evident that this piece of EA work has

much room for improvement. But what can be concluded by specifically by drawing a

Process Activity Map, as in Figure 2?

 Long lead time before reviews. The unwritten rules of the IT culture

demanded that reviews need a lead time of roughly three weeks.

 Each review triggered extensive rework. The project had three formal

reviews (two with business, one with IT). Each of them caused rework. In the

second review (no. 6), where the finished prototype was inspected, gaps in

the initial specification were detected. The third review (8) with IT architects

and project managers was even worse: One requirement was discovered to be

incompatible with the enterprise’s security guidelines, and had to be changed

in the initial specification.

 Long waiting time before the prototype implementation. Although the budget

for the prototype implementation had already been approved, the interaction

with procurement, which had to approve the project order and select the

implementation partner (3 – 4), cost a full four weeks.

 Difficult handover to the offshore prototype team. Another four weeks passed

with the ramp-up of the prototype implementation team in offshore, and the

knowledge transfer to this team via teleconference (4 – 5).

 Poor knowledge transfer from the prototype team to the enterprise architect.

The architect in charge of the project had only limited access to the

experience of the prototype implementation team when he wrote the final

guideline document (7). The employees of the partner company had already

been allocated to other projects, and were only available for a relatively short

phone conference.

 No requirements input from the IT organization. Requirements were only

discussed with the business departments, but not with the project managers,

architects, and developers who would eventually implement mobile

applications.

Besides the Process Activity Map, there are other value stream mapping tools that

have proven useful in analysing EA processes. [1] provides an exhaustive overview on

them.

Summary of tool #1

The lean quality of adopting a top-down, holistic perspective that is strictly goal-

oriented helps in stripping off needless ballast from the EA processes. The lean

approach has been tailored towards complex, repeating activities that are to be

optimized.

EA has a lot of these. Lean principles and tools, like the Process Activity Map, can

be used to streamline top-down decision making or design processes, like the creation

of an EA vision, an IT strategy, or the design of a complex IT transformation.

Tool #2: Involve all stakeholders by interlocking architecture

scrums

Tool #2: Involve All Stakeholders by Interlocking Architecture Scrums makes sure

to include all stakeholders on a regular basis. It forms a kind of “clocked” factory

approach to producing EA artifacts. Agile is an iterative way to design a system – be it

a house, a production plant, a software system, or a whole enterprise.

Being iterative is the canonical approach for an enterprise architect, as architecture

is exploratory in nature, especially due to immature and evolving nature of both

business and IT today. This way, the enterprise architect is not overburdened by an

up-front mental picture of the complete system in her mind. Instead, she can focus on

the structure and problems of the more nearby deliveries, and trust in the ability of

selective refactoring later on, in the sense of an intentional architecture as coined by

Leffingwell [3]. The usage of sprints and architecture scrum teams introduce a regular

heartbeat to architecture work, and allow for a more iterative work mode where

information is shared regularly and early.

Figure 3. Process Activity Map for a lean and agile version of the EA project from Figure 2

(times in working days)

Figure 3 shows how the Process Activity Map for the EA project from Figure 2

would look like, if executed using agile sprints. It looks radically different from the

original scenario. With this process model, it would be possible to finish in time. With

six sprints of three weeks each, and a little more than a week for the final approval,

the total duration is less than five months.

By introducing sprints, the review lead times are eliminated. There is no real

waiting time in the process anymore, only the demo day is not directly productive

(therefore a sprint is denoted as 14+1 days). Architecture and pilot implementation are

handled within one project, but not merged up to a point where the architecture work

is in danger to become swallowed up by many implementation tasks. Both are handled

in separated tracks.

The generic word track has been used deliberately. There are several ways to

implement this pattern. The simplest option is to handle architectural work items in

the same way as implementation features, and to just tag them differently in the

requirements management system. This might be sufficient our example. In larger

programs or IT transformations, EA work should be handled by a dedicated

architecture scrum team – we will describe possible setups for such a situation later in

this section.

However, the main issue in the EA process redesign is the elimination of

uncontrolled rework of architecture specifications. The stress of this statement is on

uncontrolled: Of course the frequent reviews will provide feedback, and cause

changes. But these changes are routinely incorporated into the next sprint planning –

they are expected as a natural part of the process. There is constant interchange

between those project members working on architecture, and those implementing

features.

Major input from the architecture track is translated into implementation features

only at the beginning of a sprint. There is a strict rule in the agile methodology not to

accept additional requirements in the middle of a sprint (it can only be terminated if

needed). This approach protects both architects and developers from uncontrolled ad-

hoc changes and half-baked architecture decisions.

In sprints 2 to 4, the enterprise architect works as part of the project’s architecture

group. It allows her to learn and teach at the same time. She gathers first-hand

knowledge on the technology, and can in parallel coach the project architects in their

design decisions. It allows her to keep the option open to generalize certain features

into an enterprise platform later.

From sprint 5 onwards, architecture is handled exclusively by the project architects.

The enterprise architect uses her knowledge from the pilot phase of the project to

write the guidelines document. That work is still handled as part of the project, and its

result is presented in the demos. This ensures that experience, concerns, and ideas

from the IT crowd are sufficiently embodied in the development guideline document.

Scrum patterns for EA work

In an agile project setup, teams are usually organized as scrums. A scrum team

usually comprises six and ten members. A scrum master acts as moderator for the

team. The scope of this role differs from that of a classical project manager; the scrum

master is responsible for moderating, rather than managing, the team, and protecting it

from outside disturbances.

Since the agile approach is all about managing change in a light-weight, efficient

way, a continuous interaction with the project customer is a key to success. Therefore,

another important role in the agile methodology is the product owner, who acts as a

representative of the customer, and makes sure his voice is heard in all planning

sessions.

The scrum notion has been created with software development in mind. Can it also

be applied, as a mode of team formation and interaction, to the creation of enterprise

architecture? Our answer is yes - we will see that the agile approach of continuous,

clocked interaction helps avoiding silo effects of different groups in the enterprise.

Figure 4 sums up the notation used in this paper to describe scrum patterns. Pattern

1, as depicted in Figure 5 (left) is the team setup used in the EA piloting project we

used as an example in this section. If the project is set up using agile processes, the

enterprise architect would just join the architecture team and fulfill her leading,

coaching, and supervising role there. If the project contains a large amount of

architectural work, and has more than one architect, the introduction of a dedicated

architecture scrum (indicated by a dotted line) might be advisable.

Figure 4. Notation used for scrum patterns in this paper

Figure 5. Left: Pattern 1 (an enterprise architectect involved in an agile project, for

instance as a technical lead). Right: Pattern 2 (dedicated agile EA project)

Pattern 1 can be used for running any key IT project that is considered strategically

critical, and therefore should be run under the technical guidance of an enterprise

architect. If, however, the project is entirely dedicated to developing EA artifacts – for

instance a proof of concept for a new technology, or development of an enterprise-

wide platform component –, an agile setup like in Pattern 2 (Figure 5, left) is a useful

option. The enterprise architect takes over the role of the product owner in this case,

since she is the primary recipient of the project deliverable.

Pattern 1: EA involved in an agile project Pattern 2: Dedicated EA project

Figure 6. Left: Pattern 3 (architecture scrum-of-scrums, for technical steering of a program

or IT transformation).

Right: Pattern 4 (organizing the EA core group itself as a scrum team)

The agile scrum patterns outlined so far work for a collaboration of enterprise

architects with agile IT projects. But what about EA work in general, and especially

the steering and monitoring of IT projects and programs that use the classical waterfall

model?

The solution for the latter issue is an architecture scrum-of-scrums as depicted in

Pattern 3 (Figure 6, left). It can be used for a variety of situations, from supervising an

IT transformation consisting of several loosely related programs to the development of

EA guidelines with an early buy-in from the IT community. This pattern does not

require the projects or programs themselves to be agile. The lead architects from each

project or program join a regular scrum-of-scrum meeting (for instance on a weekly

base). The enterprise architect takes either the scrum master or the product owner role,

or a combination of both.

Last but not least, Pattern 4 (Figure 6, right) depicts a model for the EA team itself.

The Chief Enterprise Architect (or who else heads the EA team) should take the scrum

master role. Unlike in agile software development, the EA scrum team develops more

than one product, and pursues multiple different activities at the same time. This

means addressing a variety of stakeholders both on business and IT side.

Therefore it makes sense to have several product owners in the team. Each product

owner should have a deep expertise of the enterprise areas(s) and stakeholder(s) she

represents, be it on the business or the IT side. This should not be a problem in a well-

composed EA team, being a mix of members originating from both business and IT

background.

In such a setup, the EA team should subscribe to a regular sprint and demo rhythm.

This way, the main stakeholders for various EA tasks can become used to the

enduring existence of an EA group (whether they like it or not). Strict adherence to a

clocked rhythm for EA-related review and demo meetings helps establishing EA as a

Pattern 3: Architecture scrum-of-scrums Pattern 4: EA team organized as scrum

reliable key player in IT decision processes. In addition, the quality will improve due

to the necessity to demonstrate the results.

Summary of tool #2

In our tools, agile principles come into the picture when EA is realized, in order to

deliver timely, and to get everyone on board. To put it simply, agile is good in

“doing”. It has a strong focus on human interaction, which is a very important part of

EA, and provides a number of practices how to structure that interaction. In addition,

agile has been designed to welcome ad-hoc change. This helps in making EA more

pragmatic and flexible.

The scrum patterns presented in this section offer a concrete advice how to

implement an agile approach to EA. Patterns 1 and 2, with the direct involvement of

enterprise architects in the practical development work, are a proper antidote against

IT anarchy on one side, and EA detachment from reality on the other. With joint

scrums, IT and EA are at least sitting in the same boat (even if they still might not row

in the same direction all the time). That makes it harder to simply ignore each other.

Pattern 3, the architecture scrum-of-scrums, helps in all areas where EA has a

supervising, monitoring, or evangelizing function. It can also be used as a way to

organize an Architecture Board for technical approvals.

Setting up the EA group as a scrum team, as in Pattern 4, helps steadying the flow

of EA work and decreasing waiting time. In addition, it ensures effective information

flow by the regular stand-up scrum meetings within the team. Such setup is especially

helpful for organisations prone to the ivory tower effect, where the constant

interaction with the stakeholders is neglected.

Tool #3: Practice iterative architecture through EA Kanban

At first sight, one could consider an EA framework like TOGAF [8] an incarnation

of the up-front-planning, waterfall mindset many IT professionals have lost faith in.

However, the actual truth is that the process model TOGAF ADM bears many traits of

an iterative work model. We will show how to combine TOGAF with the lean Kanban

approach, in order to achieve a very flexible and transparent task planning system for

EA tasks.

 TOGAF phase(s)

Theme / Task ESA SA CA Architectural Task

1. Achieve 20%

savings by

application

rationalization

A
Define KPIs for application rationalization

Specify assessment methodology

B Define segmentation for Segment Architecture

C
Revise application catalogue

Revise data structure catalogue

D Analyze technologies due for retirement

E Create work packages for Segment level

F Estimate effort

F Prioritize Epics

2. Assess trading

applications

segment for

rationalization

potential

 … ….

 B Model business processes

 C
Assess application landscape using standard EA tools

(e.g. segmentation according to Ward-Peppard, etc.)

 … …

3. Explore option to

slightly extend

application X, in

order to make

application Y

obsolete

 … …

 B
Re-model business architecture with hindsight to

possible X extension

 C
Re-model application architecture with X extension

and Y ramp-down

 … …

 E Create work packages Capability level

 F Estimate efforts

 F Prioritize Features

4. Specify

enhancement of

application X

 A …

 … …

 H …

5. Specify ramp-

down of app. Y

 A …

 … …

 H …

6. Continue assess-

ment with core

banking systems

 A …

 … …

 F …

…

Table 2. Typical application rationalization in nested TOGAF loops

(ESA = Enterprise Strategic Architecture, SA = Segment Architecture,

CA = Capability Architecture, according to the TOGAF framework [8]

TOGAF offers the option of nested loops through its ADM cycles. The top level

refers to the Enterprise Strategic Architecture, where the program themes at an

executive level are defined. Phase F of the ADM framework (Migration Planning) can

be used to initiate architecture work on the next lower level, which is Segment

Architecture. Trom there, enterprise architects can in turn can dive deeper into the

Capability Architecture. This way, a nested loop of TOGAF ADM iterations is

created.

Table 2 shows this for a prototypical IT application rationalization program in the

banking context as an example.

 The theme 1. Achieve 20% savings by application rationalization is part of

an CIO mission statement. The enterprise architects go through the TOGAF

phases A – F on Enterprise Strategic Architecture level to define KPIs and

methodology. Then they define a segmentation of the application landscape,

and create work packages on the next level.

 They start with assessment of the trading application landscape on Segment

Architecture level. This requires two loops. In the first, defined by 2. Assess

the trading applications segment for rationalization potential, the initial

target application landscape is drawn. Then, the EA team discovers a time-

and money-saving alternative: If they slightly enhance the functionality of

application X, they might be able to completely ramp down application Y. As

a consequence, they lauch a second loop through phases A – F on segment

level, and re-model the target architectures (3).

 Following this Segment Architecture, a deep dive needs to be started. Two

architecture tasks can be worked on in parallel: 4. Specify enhancement of

application X and 5. Specify ramp-down of app. Y. These loops through the

Capability Architecture will now cover the full cycle A – H, including the

actual implementation. One can imagine how much complexity this will

involve. For the sake of simplicity, these tasks are not shown in detail in

Table 2.

 In parallel to assessing the trading application landscape, the EA team needs

to go through several other segments as well. This is only hinted at in Table

2, by 6. Continue assessment with core banking systems.

EA Kanban as an antidote against planning chaos

As structured as the TOGAF-driven approach is, there is a major practical issue of

how to coordinate all the nested and parallel architecture activities. Tracking them by

the usual ad-hoc means like an Excel sheet distributed on regular base via email does

not provide a really good overview where the teams stands. On the other hand, heavy-

weight project planning tools, with their focus on the long-term time horizon, offer

little help in the volatile world of architecture work.

Adapting the Kanban approach from lean management provides a flexible,

efficient, and TOGAF-compliant way of organizing EA work. The principle of

Kanban is that task cards flow through a series of process steps. In software

development, these steps typically form a sequence like Plan – Implementation

Ongoing – Testing Ongoing – Waiting for Deployment – Live. Whenever there is a

status change for a task – for instance, the implementation has been finished – the

corresponding card is moved one cell to the right on the so-called Kanban board, as

depicted in Figure 7.

Figure 7. Kanban board as used in software development

Figure 8. EA Kanban board

For EA tasks, there is a perfect match in TOGAF ADM, which already provides a

detailed process model for EA activities with standardized phases. Instead of the

above steps for software development, the TOGAF phases A – H (plus Preliminary

phase) are used. The rich set of predefined activities within each phase provides a

blueprint for possible EA tasks. An EA Kanban board looks like shown in Figure 8.

Architecture work items like 3. Explore option to slightly extend application X, in

order to make application Y obsolete flow clockwise through the ADM phases

(instead from left to right, as in Software Kanban), triggering phase-specific tasks

(like for example Re-model business architecture with hindsight to possible X

extension in phase B) along the way. The Requirements Management phase in the

middle of the TOGAF figure is replaced by a joint backlog for all phases, marked “To

be done”.

Figure 9. Nested EA Kanban boards for Strategic, Segment and Capability architecture

The real strength of the approach is achieved when EA Kanban boards for all three

levels of detail are combined, as depicted in Figure 9. Detailing the rules for task flow

through the EA Kanban board would go beyond the scope of this paper. The interested

reader is referred to [1] for an elaboration.

Summary of tool #3

The EA Kanban approach is not a silver bullet against work overload for the EA

team. It is a tool for prioritization and focusing on nearby deliveries. That way, it

specifically helps maintaining a clear overview at all times. The EA Kanban Board

visualizes a clogging of the task flow at process bottlenecks, making it easier to

resolve them, or even avoid them altogether.

Tool #3 altogether shows that a well-established EA framework can easily be

adapted to an iterative work model. Combined with three week iterations and the

scrum setup described in tool #2, work results can be forwarded to the next level much

faster. This way, all actors in the process have a clear synchronization point for

handovers between the different roles (enterprise and project architects, business,

project managers, etc.) and the parallel TOGAF cycles on Enterprise Strategy,

Segment, and Capability level.

In a way, this is the successful application of the central agile notion of continuous

integration to EA. It allows the enterprise architects to deliver intermediate results –

strategies, visions, guidelines, and plans – in a flexible and light-weight manner to

their recipients. EA work can be tuned to prefer communication over perfection when

it comes to modeling.

Takeaways from the lean and agile toolbox

In this paper, we have outlined three tools for a lean and agile EA and enterprise

transformation – some “waste removal” techniques adapted from lean management in

tool #1, a number of specific scrum team setup patterns in tool #2, and the EA Kanban

approach to handle architecture work items in a transparent fashion in tool #3.

All these tools help to structure EA activities on a day to day basis. They introduce

a demand-driven workflow at all levels of operation, and make it easier to achieve a

holistic result. They also elicit the participation of all, in particular the ground level

stakeholders, in order to balance the helicopter view and the ground level perspective.

In that sense, the tools in this paper can be freely combined. The reader is invited to

select and pick from it what looks useful in his or her daily work.

References

1. Bente, S., Bombosch, U., Langade, S.: Collaborative Enterprise Architecture: Enriching EA

with lean, agile, and enterprise 2.0 practices. Morgan Kaufmann, Burlington, Sept. 2012

2. Krafcik, J.: Triumph of the Lean Production System. Sloan Management Review, 30(1), p.

41-52, 1988.

3. Leffingwell, D.: Agile software requirements: lean requirements practices for teams,

programs, and the enterprise. Addison-Wesley, Upper Saddle River, NJ, 2011

4. McManus, H.: Product Development Value Stream Mapping (PDVSM) Manual 1.0. The

Lean Aerospace Initiative, Boston, 2005.

5. Ohno, T.: Toyota production system: beyond large-scale production. Productivity Press,

Cambridge, Mass, 1988.

6. Poppendieck, M., Poppendieck, T. D.: Lean software development: an agile toolkit.

Addison-Wesley, Boston, 2003.

7. Poppendieck, M., Poppendieck, T. D.: Implementing lean software development: from

concept to cash. Addison-Wesley, Upper Saddle River, NJ, 2007.

8. The Open Group: TOGAFTM Version 9.1. Document Number G116, retrieved December

16th, 2011 from http://pubs.opengroup.org/architecture/togaf9-doc/arch/

9. U.S. Government Accountability Office (U.S. GAO): Information technology: the federal

enterprise architecture and agencies' enterprise architectures are still maturing (2004).

Retrieved July 27, 2011, from http://www.gao.gov/products/GAO-04-798T

10. Womack, J. P., Jones, D. T., Roos, D.: The machine that changed the world: based on the

Massachusetts Institute of Technology 5-million dollar 5-year study on the future of the

automobile. Rawson Associates, New York, 1990.

http://pubs.opengroup.org/architecture/togaf9-doc/arch/
http://www.gao.gov/products/GAO-04-798T

